Fabrication of Aluminum Foam-Filled Thin-Wall Steel Tube by Friction Welding and Its Compression Properties
نویسندگان
چکیده
Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube.
منابع مشابه
Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding
Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by ...
متن کاملManufacturing of Aluminum Thin Cylindrical Parts By Using Friction Stir Welding Method
Recently friction stir welding for manufacturing of welded tubes has been developed. Friction stir welding is a continuous solid state welding process in which a non-consumable rotating tool using severe plastic deformation Can join materials can be join materials. Commonly, a portion of a specially shaped rotating tool is plunged between metalsjoint cross section and adjacent faces of the join...
متن کاملExperimental and Numerical Simulation Investigation on Crushing Response of Foam-Filled Conical Tubes Stiffened with Annular Rings
In this paper, crashworthiness characteristics of conical steel tubes stiffened by annular rings and rigid polyurethane foam are investigated. For this purpose, wide circumferential rings are created from the outer surface of the conical tube at some determined areas along tube length. In fact, this method divides a long conical tube into several tubes of shorter length. When this structure is ...
متن کاملManufacturing of Aluminum Thin Cylindrical Parts By Using Friction Stir Welding Method
Recently friction stir welding for manufacturing of welded tubes has been developed. Friction stir welding is a continuous solid state welding process in which a non-consumable rotating tool using severe plastic deformation Can join materials can be join materials. Commonly, a portion of a specially shaped rotating tool is plunged between metalsjoint cross section and adjacent faces of the join...
متن کاملEffect of Fe additive on plastic deformation for crush-boxes with closed-cell metal foams, Part I: Al-composite foam compression response
AbstractIn this paper, we investigate effect of Fe–intermetallic compounds on plastic deformation of closed-cell composite Aluminum Foam as filler of thin-walled tubes. However, deformation of the Aluminum foam-filled thin-walled tubes as crushed-box will be presented in Part (II). Composite foams of AlSi7SiC3 and AlSi7SiC3-(Fe) as closed cell were synthesized by powder metallurgy foaming metho...
متن کامل